M4-08: Discovering the Law of Large Numbers in Python
Part of the "Simulation and Distributions" Learning Badge
Video Walkthrough: https://discovery.cs.illinois.edu/m4-08/
The Law of Large Numbers
The law of large numbers informs us that the average result will tend to the expected value the more trials or simulations we run.

Puzzle \#1: Write a simple simulation that simulates rolling two six-sided dice and recording the sum of both rolls:
Simulation:

Calculating our Cumulative Average

The pandas library provides a cumulative sum function -- cumsum () -- that calculates the current column sum up to the current row in the dataset.

Puzzle \#2: Calculating the cumulative sum by hand for a possible set of rolls, and then a cumulative average:

index	diceTotal	cumsum	
0	7		
1	10		
2	4		
3	7		
4	12		
5	5		
6	7		

M4-08: Discovering the Law of Large Numbers in Python
Part of the "Simulation and Distributions" Learning Badge
Video Walkthrough: https://discovery.cs.illinois.edu/m4-08/

Discovering the Law of Large Numbers

Puzzle \#3: Create a line plot of the your cumulative average function, focusing on just the first 10 rows, filling out the table below:

Rows	What is the range of data of the right half of the graph?
$[0: 10]$	
$[0: 100]$	
$[0: 10000]$	
$[0: 100000]$	

Analysis:
(a): What is the expected result when rolling two dice and calculating the sum?
(b): What happens to the cumulative average as we show more and more © simulations?

